Средние величины. Закон средних чисел или в чем секрет успешных продавцов Понятия закона больших чисел и его трактовка

Средние величины. Закон средних чисел или в чем секрет успешных продавцов Понятия закона больших чисел и его трактовка

Закон больших чисел

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности , и усиленный закон больших чисел, когда имеет место сходимость почти всюду .

Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел - совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Слабый закон больших чисел

Пусть есть бесконечная последовательность (последовательное перечисление) одинаково распределённых и некоррелированных случайных величин , определённых на одном вероятностном пространстве . То есть их ковариация . Пусть . Обозначим выборочное среднее первых членов:

Усиленный закон больших чисел

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин , определённых на одном вероятностном пространстве . Пусть . Обозначим выборочное среднее первых членов:

.

Тогда почти наверное.

См. также

Литература

  • Ширяев А. Н. Вероятность, - М .: Наука. 1989.
  • Чистяков В. П. Курс теории вероятностей, - М ., 1982.

Wikimedia Foundation . 2010 .

  • Кинематограф России
  • Громека, Михаил Степанович

Смотреть что такое "Закон больших чисел" в других словарях:

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - (law of large numbers) В том случае, когда поведение отдельных представителей населения отличается большим своеобразием, поведение группы в среднем более предсказуемо, чем поведение любого ее члена. Тенденция, в соответствии с которой группы… … Экономический словарь

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - см. БОЛЬШИХ ЧИСЕЛ ЗАКОН. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    Закон Больших Чисел - принцип, согласно которому количественные закономерности, присущие массовым общественным явлениям, наиболее явным образом проявляются при достаточно большом числе наблюдений. Единичные явления в большей степени подвержены воздействию случайных и… … Словарь бизнес-терминов

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - утверждает, что с вероятностью, близкой к единице, среднее арифметическое большого числа случайных величин примерно одного порядка будет мало отличаться от константы, равной среднему арифметическому из математических ожиданий этих величин. Разл.… … Геологическая энциклопедия

    закон больших чисел - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN law of averageslaw of large numbers … Справочник технического переводчика

    закон больших чисел - didžiųjų skaičių dėsnis statusas T sritis fizika atitikmenys: angl. law of large numbers vok. Gesetz der großen Zahlen, n rus. закон больших чисел, m pranc. loi des grands nombres, f … Fizikos terminų žodynas

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - общий принцип, в силу к рого совместное действие случайных факторов приводит при нек рых весьма общих условиях к рез ту, почти не зависящему от случая. Сближение частоты наступления случайного события с его вероятностью при возрастании числа… … Российская социологическая энциклопедия

    Закон больших чисел - закон, гласящий, что совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая … Социология: словарь

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - статистический закон, выражающий связь статистических показателей (параметров) выборочной и генеральной совокупности. Фактические значения статистических показателей, полученные по некоторой выборке, всегда отличаются от т.н. теоретических… … Социология: Энциклопедия

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - принцип, по которому частота финансовых потерь определенного вида может быть предсказана с высокой точностью тогда, когда есть большое количество потерь аналогичных видов … Энциклопедический словарь экономики и права

Книги

  • Комплект таблиц. Математика. Теория вероятностей и математическая статистика. 6 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 6 листов. Случайные…

Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.

Взаимодействуя ежедневно в работе или учебе с цифрами и числами, многие из нас даже не подозревают о том, что существует очень интересный закон больших чисел, применяемый, например, в статистике, экономике и даже психолого-педагогических исследованиях. Он относится к теории вероятностей и говорит о том, что среднее арифметическое какой-либо большой выборки из фиксированного распределения близко к математическому ожиданию этого распределения.

Вы, наверное, заметили, что понять сущность этого закона непросто, особенно тем, кто не особо дружит с математикой. Исходя из этого, мы бы хотели рассказать о нем простым языком (насколько это возможно, конечно), чтобы каждый мог хотя бы примерно уяснить для себя, что это такое. Эти знания помогут вам лучше разобраться в некоторых математических закономерностях, стать более эрудированным и положительным образом повлиять на .

Понятия закона больших чисел и его трактовка

Помимо рассмотренного нами выше определения закона больших чисел в теории вероятностей, можно привести и его экономическое толкование. В этом случае он представляет собой принцип, согласно которому частоту финансовых потерь конкретного вида можно предсказать с высокой степенью достоверности тогда, когда наблюдается высокий уровень потерь подобных видов вообще.

Помимо этого, в зависимости от уровня сходимости признаков можно выделить слабый и усиленный законы больших чисел. О слабом речь идет, когда сходимость существует по вероятности, а об усиленном – когда сходимость существует практически во всем.

Если интерпретировать несколько иначе, то следует сказать так: всегда можно найти такое конечное число испытаний, где с любой запрограммированной наперед вероятностью меньше единицы относительная частота появления какого-то события будет крайне мало отличаться от его вероятности.

Таким образом, общую суть закона больших чисел можно выразить так: результатом комплексного действия большого количества одинаковых и независимых случайных факторов будет такой результат, который не зависит от случая. А если говорить еще более простым языком, то в законе больших чисел количественные закономерности массовых явлений будут явно проявляться только при большом их числе (поэтому и называется закон законом больших чисел).

Отсюда можно сделать вывод, что сущность закона состоит в том, что в числах, которые получаются при массовом наблюдении, имеются некоторые правильности, обнаружить которые в небольшом количестве фактов невозможно.

Сущность закона больших чисел и его примеры

Закон больших чисел выражает наиболее общие закономерности случайного и необходимого. Когда случайные отклонения «гасят» друг друга, средние показатели, определенные для одной и той же структуры, приобретают форму типичных. Они отражают действия существенных и постоянных фактов в конкретных условиях времени и места.

Определенные посредством закона больших чисел закономерности сильны только тогда, когда представляют массовые тенденции, и они не могут быть законами для отдельных случаев. Так, вступает в силу принцип математической статистики, говорящий, что комплексное действие ряда случайных факторов способно стать причиной неслучайного результата. И наиболее яркий пример действия данного принципа – это сближение частоты наступления случайного события и его вероятности, когда возрастает количество испытаний.

Давайте вспомним обычное бросание монетки. Теоретически орел и решка могут выпасть с одной и той же вероятностью. Это означает, что если, к примеру, бросить монетку 10 раз, 5 из них должна выпасть решка и 5 – орел. Но каждый знает, что так не происходит практически никогда, ведь соотношение частоты выпадения орла и решки может быть и 4 к 6, и 9 к 1, и 2 к 8 и т.д. Однако с увеличением количества подбрасываний монетки, например, до 100, вероятность того, что выпадет орел или решка, достигает 50%. Если же теоретически проводить бесконечное количество подобных опытов, вероятность выпадения монетки обеими сторонами всегда будет стремиться к 50%.

На то, как именно упадет монетка, влияет огромное число случайных факторов. Это и положение монетки на ладони, и сила, с которой совершается бросок, и высота падения, и его скорость и т.д. Но если опытов много, вне зависимости от того, как воздействуют факторы, всегда можно утверждать, что практическая вероятность близка к вероятности теоретической.

А вот еще один пример, который поможет понять сущность закона больших чисел: предположим, что нам нужно оценить уровень заработка людей в каком-то регионе. Если мы будем рассматривать 10 наблюдений, где 9 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, среднее арифметическое составит 68 тыс. рублей, что, естественно, маловероятно. Но если мы возьмем в расчет 100 наблюдений, где 99 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, то при расчете среднего арифметического получим 24,8 тыс. рублей, что уже ближе к реальному положению дел. Увеличивая число наблюдений, мы будем заставлять среднее значение стремиться к истинному показателю.

Именно по этой причине для применения закона больших чисел в первую очередь необходимо набрать статистический материал, чтобы получать правдивые результаты, изучая большое число наблюдений. Потому-то и удобно использовать этот закон, опять же, в статистике или социальной экономике.

Подведем итоги

Значение того, что закон больших чисел работает, сложно переоценить для любой области научного знания, и особенно для научных разработок в области теории статистики и методов статистического познания. Действие закона также обладает большим значением и для самих изучаемых объектов с их массовыми закономерностями. На законе больших чисел и принципе математической статистике основываются практически все методы статистического наблюдения.

Но, даже не беря во внимание науку и статистику как таковые, можно смело сделать вывод, что закон больших чисел – это не просто явление из области теории вероятностей, но феномен, с которым мы сталкиваемся практически каждый день в своей жизни.

Надеемся, теперь сущность закона больших чисел стала вам более понятна, и вы сможете легко и просто объяснить его кому-то другому. А если тема математики и теории вероятностей вам интересна в принципе, то рекомендуем почитать о и . Также познакомьтесь с и . И, конечно же, обратите внимание на наш , ведь, пройдя его, вы не только овладеете новыми техниками мышления, но и улучшите свои когнитивные способности в целом, в том числе и математические.


В чем секрет успешных продавцов? Если понаблюдать за лучшими продавцами любой компании, вы заметите, что их объединяет одно общее качество. Каждый из них встречается с большим количеством людей и делает больше презентаций, чем менее успешные продавцы. Эти люди понимают, что продажи - игра чисел, и чем большему количеству людей они расскажут о своих продуктах или услугах, тем больше сделок заключат - вот и все. Они понимают, что если будут общаться не только с теми немногими, кто определенно скажет им "да", но и с теми, чей интерес к их предложению не столь велик, то закон средних чисел сработает в их пользу.


Ваши доходы будут зависеть от количества продаж, но в то же время, они будут прямо пропорциональны количеству презентаций, которые вы делаете. Как только вы поймете и начнете применять на практике закон средних чисел, тревога, связанная с началом нового бизнеса или работы в новой сфере, начнет снижаться. А в результате начнет расти чувство контроля и уверенность в своей способности зарабатывать. Если вы просто будете делать презентации и оттачивать в этом процессе свои навыки, появятся и сделки.

Чем думать о количестве сделок, думайте лучше о количестве презентаций. Нет смысла просыпаться утром или приходить домой вечером и приниматься гадать, кто купит у вас продукт. Вместо этого, лучше всего каждый день планировать, сколько звонков вам необходимо сделать. А потом, несмотря ни на что - сделать все эти звонки! Такой подход упростит вам работу - потому что это простая и конкретная цель. Если вы будете знать, что перед вами стоит вполне определенная и достижимая задача, вам будет легче сделать запланированное количество звонков. Если в этом процессе вы пару раз услышите "да" - тем лучше!

А если "нет", то вечером вы будете чувствовать, что честно сделали все, что могли, и вас не станут мучить мысли о том, сколько денег вы заработали, или как много компаньонов приобрели за день.

Предположим, в вашей компании или в вашем бизнесе средний продавец заключает одну сделку на четыре презентации. Теперь представьте себе, что вы вытаскиваете карты из колоды. Каждая карта трех мастей - пики, бубны и трефы - это презентация, на которой вы профессионально представляете продукт, услугу или возможность. Вы делаете это так хорошо, как только можете, но все равно не заключаете сделку. А каждая червовая карта - это сделка, позволяющая вам получить деньги или приобрести нового компаньона.

В такой ситуации, разве вам не захочется вытащить из колоды как можно больше карт? Предположим, вам предлагают вытащить столько карт, сколько вы хотите, и при этом платить вам или предлагать нового компаньона каждый раз, когда вы вытаскиваете червовую карту. Вы начнете увлеченно тянуть карты, едва замечая, какой масти карту только что вытащили.

Вы знаете, что в колоде из пятидесяти двух карт - тринадцать червовых. А в двух колодах - двадцать шесть червовых карт, и так далее. Будете ли вы разочарованы, вытащив пики, бубны или трефы? Нет конечно! Вы будете думать только о том, что каждый такой "промах" приближает вас - к чему? К червовой карте!

Но знаете что? Вам уже сделали такое предложение. Вы находитесь в уникальной ситуации, позволяющей заработать столько, сколько вам захочется, и вытащить столько червовых карт, сколько вы хотите вытащить в своей жизни. И если вы просто добросовестно " тянете карты ", совершенствуете свои навыки и стойко переносите немного пик, бубен и треф, то станете прекрасным продавцом и добьетесь успеха.

Одна из вещей, делающих процесс продаж настолько увлекательным - то, что каждый раз, когда тасуешь колоду, карты перемешиваются по-разному. Иногда все червы оказываются в начале колоды, и после удачной полосы (когда нам уже кажется, что мы никогда не проиграем!) нас ждет длинный ряд карт другой масти. А в другой раз, чтобы добраться до первой червы, придется пройти через бесконечное количество пик, треф и бубен. А иногда карты разной масти выпадают строго по очереди. Но в любом случае, в каждой колоде из пятидесяти двух карт, в каком-то порядке, всегда есть тринадцать червовых карт. Просто вытаскивайте карты до тех пор, пока их не найдете.



От: Leylya,  

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности , и усиленный закон больших чисел, когда имеет место сходимость почти всюду .

Всегда найдётся такое конечное число испытаний, при котором с любой заданной наперёд вероятностью меньше 1 относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел: совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Энциклопедичный YouTube

    1 / 5

    ✪ Закон больших чисел

    ✪ 07 - Теория вероятностей. Закон больших чисел

    ✪ 42 Закон больших чисел

    ✪ 1 - Закон больших чисел Чебышёва

    ✪ 11 класс, 25 урок, Гауссова кривая. Закон больших чисел

    Субтитры

    Давайте разберем закон больших чисел, который является, пожалуй, самым интуитивным законом в математике и теории вероятностей. И поскольку он применим ко многим вещам, его иногда используют и понимают неправильно. Давайте я вначале для точности дам ему определение, а потом уже мы поговорим об интуиции. Возьмем случайную величину, например Х. Допустим, мы знаем ее математическое ожидание или среднее для совокупности. Закон больших чисел просто говорит, что, если мы возьмем пример n-ого количества наблюдений случайной величины и выведем среднее число всех этих наблюдений… Давайте возьмем переменную. Назовем ее Х с нижним индексом n и с чертой наверху. Это среднее арифметическое n-ого количества наблюдений нашей случайной величины. Вот мое первое наблюдение. Я провожу эксперимент один раз и делаю это наблюдение, затем я провожу его еще раз и делаю вот это наблюдение, я провожу его снова и получаю вот это. Я провожу этот эксперимент n-ое количество раз, а затем делю на количество моих наблюдений. Вот мое выборочное среднее значение. Вот среднее значение всех наблюдений, которые я сделала. Закон больших чисел говорит нам, что мое выборочное среднее будет приближаться к математическому ожиданию случайной величины. Либо я могу также написать, что мое выборочное среднее будет приближаться к среднему по совокупности для n-ого количества, стремящегося к бесконечности. Я не буду четко разделять понятия «приближение» и «сходимость», но надеюсь, вы интуитивно понимаете, что, если я возьму довольно большую выборку здесь, то я получу математическое ожидание для совокупности в целом. Думаю, большинство из вас интуитивно понимает, что, если я сделаю достаточное количество испытаний с большой выборкой примеров, в конце концов, испытания дадут мне ожидаемые мною значения, принимая во внимание математическое ожидание, вероятность и все такое прочее. Но, я думаю, часто бывает непонятно, почему так происходит. И прежде, чем я начну объяснять, почему это так, давайте я приведу конкретный пример. Закон больших чисел говорит нам, что... Допустим, у нас есть случайная величина Х. Она равна количеству орлов при 100 подбрасываниях правильной монеты. Прежде всего, мы знаем математическое ожидание этой случайной величины. Это количество подбрасываний монеты или испытаний, умноженное на шансы успеха любого испытания. Значит, это равно 50-ти. То есть, закон больших чисел говорит, что, если мы возьмем выборку, или если я приведу к среднему значению эти испытания, я получу... В первый раз, когда я провожу испытание, я подбрасываю монету 100 раз или возьму ящик с сотней монет, тряхну его, а потом сосчитаю, сколько у меня выпадет орлов, и получу, допустим, число 55. Это будет Х1. Затем я снова встряхну ящик и получу число 65. Затем еще раз – и получу 45. И я проделываю это n-ое количество раз, а затем делю это на количество испытаний. Закон больших чисел говорит нам, что это среднее (среднее значение всех моих наблюдений) будет стремиться к 50-ти в то время, как n будет стремиться к бесконечности. Теперь я бы хотела немного поговорить о том, почему так происходит. Многие считают, что если после 100 испытаний, у меня результат выше среднего, то по законам вероятности у меня должно выпасть больше или меньше орлов для того, чтобы, так сказать, компенсировать разницу. Это не совсем то, что произойдет. Это часто называют «заблуждением азартного игрока». Давайте я покажу различие. Я буду использовать следующий пример. Давайте я изображу график. Поменяем цвет. Это n, моя ось Х – это n. Это количество испытаний, которые я проведу. А моя ось Y будет выборочным средним. Мы знаем, что математическое ожидание этой произвольной переменной равно 50-ти. Давайте я это нарисую. Это 50. Вернемся к нашему примеру. Если n равно… Во время моего первого испытания я получила 55, это мое среднее значение. У меня только одна точка ввода данных. Затем, после двух испытаний, я получаю 65. Значит, мое среднее значение будет 65+55, деленное на 2. Это 60. И мое среднее значение немного возросло. Затем я получила 45, что вновь снизило мое среднее арифметическое. Я не буду наносить на графике 45. Теперь мне нужно привести все это к среднему значению. Чему равно 45+65? Давайте я вычислю это значение, чтобы обозначить точку. Это 165 делить на 3. Это 53. Нет, 55. Значит, среднее значение снова опускается до 55-ти. Мы можем продолжить эти испытания. После того, как мы проделали три испытания и получили это среднее, многие люди думают, что боги вероятности сделают так, что у нас выпадет меньше орлов в будущем, что в следующих нескольких испытаниях результаты будут ниже, чтобы уменьшить среднее значение. Но это не всегда так. В дальнейшем вероятность всегда остается такой же. Вероятность того, что у меня выпадет орел, всегда будет 50-ти %. Не то, что у меня изначально выпадает определенное количество орлов, большее, чем я ожидаю, а дальше внезапно должны выпасть решки. Это «заблуждение игрока». Если у вас выпадает несоразмерно большое количество орлов, это не значит, что в определенный момент у вас начнет выпадать несоразмерно большое количество решек. Это не совсем так. Закон больших чисел говорит нам, что это не имеет значения. Допустим, после определенного конечного количества испытаний, ваше среднее... Вероятность этого достаточно мала, но, тем не менее... Допустим, ваше среднее достигло этой отметки – 70-ти. Вы думаете: «Ого, мы основательно отошли от математического ожидания». Но закон больших чисел говорит, что ему все равно, сколько испытаний мы провели. У нас все равно осталось бесконечное количество испытаний впереди. Математическое ожидание этого бесконечного количества испытаний, особенно в подобной ситуации, будет следующим. Когда вы приходите к конечному числу, которое выражает какое-нибудь большое значение, бесконечное число, которое сойдется с ним, снова приведет к математическому ожиданию. Это, конечно, очень свободное толкование, но это то, что говорит нам закон больших чисел. Это важно. Он не говорит нам, что, если у нас выпало много орлов, то каким-то образом вероятность выпадения решки увеличится, чтобы это компенсировать. Этот закон говорит нам, что неважно, каков результат при конечном количестве испытаний, если у вас еще осталось бесконечное количество испытаний впереди. И если вы сделаете достаточное их количество, вы вернетесь снова к математическому ожиданию. Это важный момент. Подумайте о нем. Но это не используется ежедневно на практике с лотереями и в казино, хотя известно, что, если вы сделаете достаточное количество испытаний... Мы даже можем это посчитать... чему равна вероятность того, что мы серьезно отклонимся от нормы? Но казино и лотереи каждый день работают по тому принципу, что если взять достаточное количество людей, естественно, за короткий срок, с небольшой выборкой, то несколько человек сорвут куш. Но за большой срок казино всегда останется в выигрыше из-за параметров игр, в которые они приглашают вас играть. Это важный принцип вероятности, который является интуитивным. Хотя иногда, когда вам его формально объясняют со случайными величинами, все это выглядит немного запутанно. Все, что этот закон говорит, – это что чем больше выборок, тем больше среднее арифметическое этих выборок будет стремиться к истинному среднему. А если быть более конкретной, то среднее арифметическое вашей выборки сойдется с математическим ожиданием случайной величины. Вот и все. До встречи в следующем видео!

Слабый закон больших чисел

Слабый закон больших чисел также называется теоремой Бернулли , в честь Якоба Бернулли , доказавшего его в 1713 году .

Пусть есть бесконечная последовательность (последовательное перечисление) одинаково распределённых и некоррелированных случайных величин . То есть их ковариация c o v (X i , X j) = 0 , ∀ i ≠ j {\displaystyle \mathrm {cov} (X_{i},X_{j})=0,\;\forall i\not =j} . Пусть . Обозначим через выборочное среднее первых n {\displaystyle n} членов:

.

Тогда X ¯ n → P μ {\displaystyle {\bar {X}}_{n}\to ^{\!\!\!\!\!\!\mathbb {P} }\mu } .

То есть для всякого положительного ε {\displaystyle \varepsilon }

lim n → ∞ Pr (| X ¯ n − μ | < ε) = 1. {\displaystyle \lim _{n\to \infty }\Pr \!\left(\,|{\bar {X}}_{n}-\mu |<\varepsilon \,\right)=1.}

Усиленный закон больших чисел

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин { X i } i = 1 ∞ {\displaystyle \{X_{i}\}_{i=1}^{\infty }} , определённых на одном вероятностном пространстве (Ω , F , P) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P})} . Пусть E X i = μ , ∀ i ∈ N {\displaystyle \mathbb {E} X_{i}=\mu ,\;\forall i\in \mathbb {N} } . Обозначим через X ¯ n {\displaystyle {\bar {X}}_{n}} выборочное среднее первых n {\displaystyle n} членов:

X ¯ n = 1 n ∑ i = 1 n X i , n ∈ N {\displaystyle {\bar {X}}_{n}={\frac {1}{n}}\sum \limits _{i=1}^{n}X_{i},\;n\in \mathbb {N} } .

Тогда X ¯ n → μ {\displaystyle {\bar {X}}_{n}\to \mu } почти всегда.

Pr (lim n → ∞ X ¯ n = μ) = 1. {\displaystyle \Pr \!\left(\lim _{n\to \infty }{\bar {X}}_{n}=\mu \right)=1.} .

Как и любой математический закон, закон больших чисел может быть применим к реальному миру только при известных допущениях, которые могут выполняться лишь с некоторой степенью точности. Так, например, условия последовательных испытаний часто не могут сохраняться бесконечно долго и с абсолютной точностью . Кроме того, закон больших чисел говорит лишь о невероятности значительного отклонения среднего значения от математического ожидания .

просмотров